

ROLE OF PLANT-DERIVED ALKALOIDS IN NEURODEGENERATIVE DISEASE TREATMENT

Mayank Kumar ^{*1}, Rupali Sharma ², Vimal Kumar Yadav ³

Research Scholar ¹, Associate Professor ², Amity Institute of Pharmacy, Amity University Haryana, Panchgaon, Gurugram - 122413, Haryana, India.

Assistant Professor ³, Institute of Pharmacy, Dr Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh, India.

Article History

Received: 11 August 2024
Revised: 25 August 2024
Accepted: 22 September 2024
Published: 25 December 2024

Correspondence should be addressed to

Mayank Kumar,
Research Scholar,
Amity Institute of Pharmacy, Amity University Haryana, Panchgaon, Gurugram - 122413, Haryana, India.
Email- mayank.pharma89@gmail.com

ABSTRACT: Technological advances show progressive neuronal loss, cognition, and motor function in neurodegenerative diseases that include Alzheimer's, Parkinson's, and Huntington's which contribute to the most disabling conditions people live with. The current therapies aim only at the manifesting signs of a disease and not the root causes, and this after over thirty years of research. To meet this therapeutic need, innovative therapies that address the involved complex pathology of these diseases are required. Another promising approach in the search for new agents for the treatment of neurodegenerative diseases: Alkaloids of plant origin, which the nature has no lack as a chemist. In natural nitrogenous compounds called alkaloids, one detects a spectrum of pharmacological actions that suits the neuroprotective needs best. Huperzine A – derived from *Lycopodium* species, is a neurological drug that is an acetylcholinesterase, while galantamine derived from *Amaryllidaceae* plants has revolutionized the treatment of Alzheimer disease by modifying the cholinergic system. Berberine, a naturally occurring alkaloid from the plant *Berberis* species and reserpine, an alkaloid from *Rauwolfia* species, have been shown to have a potential therapeutic use in the management of PD since BER and RES possess antioxidant, anti-inflammatory and anti-dopaminergic properties in an experimental model of PD. Recent studies suggest that it is possible to learn how alkaloids can help with the protection and prevention of neurodegenerative diseases due to their ability to stop protein clustering. These are just a few of the challenges that need to be addressed in order to make these compounds with miraculous activity of natural origin real in the clinic, including issues of scalability, bioavailability, and pharmacokinetics. Advancements in the synthetic biology, nanotechnology and artificial intelligence can potentially alter the therapeutic applicability of the alkaloids. In this review, a discussion of the clinical applications and implication of alkaloids extracted from plants for medicinal purposes, as well as the actions mechanism and potential future applications is covered. Alkaloids, which blends indigenous wisdom with modern scientific research, has unearthed solutions that if realized, hold the prospects towards ending neurodegeneration.

Keywords: Neurodegenerative diseases, Plant-derived alkaloids, Neuroprotection, Alzheimer disease, Drug discovery

1. INTRODUCTION

The substantive decrease of neuronal morphology or physiology, and ultimately the neurons' losing viability is a characteristic feature of ND. For example, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS). Cognitive, motor and sensory decline are mediated through neuro inflammation, mitochondrial impairment, oxidative stress, protein misfolding and aggregation and other features [1].

For instance, 60-70% of dementia cases are phenomena of Alzheimer's disease, while the fact that more than 55 million people worldwide have dementia is troubling. Likewise, the prevalence of Parkinson's disease that currently has more than ten million individuals suffering from it, is founded to be boosted by the ageing of populations [2].

Presently, the drugs utilized in managing neurodegenerative ailments are primarily curative and do not take care of the fundamental cause of the disease. Short-term relief is available in cases of Parkinson's disease (PD) with drugs like levodopa and cholinesterase inhibitors but they are not in any way curative of the worsening of the illness [3]. Since most of the treatments for the diseases are a work on single link rather than on the multiple links that are responsible for neuronal death it is very difficult to come up with drugs that can treat the neurodegenerative illnesses. In addition, clinical trials in diseases concerning neurological disorders often exhibit a high attrition rate and so the need to look for new approaches to identify drugs [4]. Studies relating to chemicals obtained from plants have recently received increased attention in this particular discipline. Plants have a large amount of bioactive constituent, due to the diverse chemical makeup, and have been used since antiquity for numerous afflictions medically.

Alkaloids are a miscellaneous group of secondary metabolites, which are nitrogen-containing compounds; their therapeutic possibilities have been colossal. Alkaloids can be isolated from a large number of medicinal plants and are known to exhibit numerous positive impacts such as guarding neurons from injury, decreasing inflammation and preventing cell death. Among the widely known drugs, the Alzheimer's disease galantamine approved by the FDA can be listed here as well as the lycopodium alkaloid – huperzine A – containing acetylcholinesterase inhibitors [5].

The therapeutic efficacy comes with the fact that most alkaloids can interact with so many disease processes at once. For example, they may capture and neutralize reactive oxygen species, modulate neurotransmitter receptor, prevent protein aggregation and decrease neuro inflammation. This fact makes alkaloids very attractive for interference with the multiple and interconnected molecular ways contributing to neurodegeneration [6]. Furthermore, the advances in phytochemistry and pharmacology have created the ability for the identification and subsequent optimization of these chemicals and offers a promise in the formulation of new medications. Therefore, this article aims to present an extensive view on the use of plant derived alkaloids in combating neurodegenerative diseases [7]. It also scrutinizes their modes of operation, their uses in treatment and the challenges faced in converting these biological substances into drugs. Thus, connecting indigenous wisdom with new empiricism, alkaloids provide a roadmap towards innovative cures for some of the paramount illnesses of the present [8].

2. Overview of Plant-Derived Alkaloids

Definition and Classification of Alkaloids

The nitrogen-containing alkaloids are a diverse group of chemical compounds, which are predominantly derived from plants. In pharmacological and therapeutic contexts, these substances are essential because of their large biological effects. The structural properties and biosynthetic origin of alkaloids determine their chemical classification, which includes [9]:

Pyrrolidine Alkaloids (e.g., nicotine from *Nicotiana tabacum*): An ornithine-lysine derivative [10].

Quinoline Alkaloids (e.g., quinine from *Cinchona* species): Synthesized from tryptophan [11].

Isoquinoline Alkaloids (e.g., berberine from *Berberis* species): Formed from tyrosine [12].

Tropane Alkaloids (e.g., atropine from *Atropa belladonna*): Derived from ornithine [13].

Indole Alkaloids (e.g., vinblastine from *Catharanthus roseus*): Contain an indole ring and are derived from tryptophan [14].

The structural diversity and broad spectrum of biological activities such as neuroprotective, anti-inflammatory and enzyme suppressive effects are also embedded in this classification system.

Alkaloids' Biological Functions in Plants

It is however worth to understand that alkaloids, which are a class of substance called secondary metabolites are crucial in the survival and reproduction of plants. Its several biological functions include [15]:

Defense Mechanisms: Most alkaloids are bitter tasting and some are even toxic, thus function as natural insect repellents and deterrent to herbivores.

Growth Regulation: Some of the effects of nicotine and other alkaloids is that metabolism alters in the plant's development and growth.

Interaction with Ecosystems: Alkaloids help plants by attracting pollinators or through protecting plants from their predators [16].

Methods for Extraction and Characterization of Alkaloids

Modern methods of extracting and characterizing plant-based alkaloids are essential for their identification and potential use:

Extraction Techniques:

Solvent Extraction: Traditional method utilizing organic solvents like Chloroform, Methanol or ethanol.

Supercritical Fluid Extraction (SFE): This process utilizes Supercritical fluid Carbon dioxide to extract Alkaloids and is eco-friendly in every way possible.

Ultrasound-Assisted Extraction (UAE): In this method, yield is raised, and the process time is reduced by introducing fine ultrasonic waves in order to break up the plant cell wall structures [17].

Characterization Techniques:

Chromatography: For individual analysis of the chemical, the ideal techniques are the gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC).

Spectroscopy: Computational methods aid structural and functional characteristics using nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR).

X-Ray Crystallography: Provides clear structural information on the three-dimensional disposition of alkaloids [18].

Both the exact isolation and optimization of bioactive substances for therapeutic use are made possible by these technologies.

Table 1: Summary of major classes of alkaloids with examples and their sources (e.g., pyrrolidine, quinoline, isoquinoline) [19]

Class of Alkaloid	Example	Plant Source	Key Properties
Pyrrolidine	Nicotine	<i>Nicotiana tabacum</i> (Tobacco)	Stimulant, modulates neurotransmitters
Quinoline	Quinine	<i>Cinchona officinalis</i>	Antimalarial, antipyretic
Isoquinoline	Berberine	<i>Berberis</i> species	Antioxidant, anti-inflammatory
Tropane	Atropine	<i>Atropa belladonna</i> (Deadly Nightshade)	Anticholinergic, muscle relaxant
Indole	Vinblastine	<i>Catharanthus roseus</i> (Madagascar Periwinkle)	Anticancer, antimitotic
Imidazole	Pilocarpine	<i>Pilocarpus</i> species	Treats glaucoma, stimulates saliva
Steroidal	Solanine	<i>Solanum tuberosum</i> (Potato)	Antifungal, toxic in high doses
Piperidine	Coniine	<i>Conium maculatum</i> (Hemlock)	Neurotoxin, affects motor neurons
Purine	Caffeine	<i>Coffea arabica</i> (Coffee)	Stimulant, CNS enhancer
Phenylethylamine	Mescaline	<i>Lophophora williamsii</i> (Peyote Cactus)	Psychoactive, hallucinogenic
Acridine	Acriflavine	Synthetic origin (<i>Berberis</i> derivatives)	Antibacterial, antiprotozoal
Alkaloidal Amine	Ephedrine	<i>Ephedra sinica</i>	Bronchodilator, treats asthma

3. Mechanisms of Action in Neurodegenerative Diseases

The many processes demonstrated by alkaloids derived from plants which can create neurodegenerative illnesses suggest that they may treat the root cause of neurodegenerative disorders. Pertinent to disease progression, these pathways manage inflammation in the nervous system, accumulation of potentially toxic protein, increased toxicity from oxidative processes, and imbalance of neurotransmitters [20].

Antioxidant Activity

Neurodegenerative diseases are accompanied by the damage that neurons receive due to oxidative stress, the situation when the amount of ROS exceeds the levels of antioxidants. Berberine (from *Berberis* species) and caffeine (from *Coffee arabica*) are alkaloids that have powerful antioxidant properties because [21]:

- Protecting neurons from oxidative stress by scavenging free radicals.
- By boosting the production of glutathione peroxidase and superoxide dismutase (SOD), two naturally occurring antioxidant enzymes.
- Keeping mitochondria healthy, which are essential for neuronal energy metabolism, against oxidative damage [22].

Modulation of Neurotransmitter Systems

Neurotransmitter imbalance is another feature of neurodegenerative disorders; for instance, a lesser concentration of acetylcholine in Alzheimer's illness or dopamine in Parkinson's illness. Analgesic effects of alkaloids on these systems include [23]:

Acetylcholinesterase (AChE) Inhibition: For enhanced cognitive function in the Alzheimer's disease; galantamine (Amaryllidaceae) and huperzine-A (Lycopodium species) acts as AChE inhibitors which enhances choline acetyl transferase [24].

Dopaminergic Modulation: The motor manifestations of Parkinson's disease can be treated by control of dopamine pathways by berberine and reserpine (*Rauvolfia* species) [25].

Serotonergic and GABAergic Effects: As ligands of GABA and serotonin receptors, most alkaloids that act as modulators of neuronal activity maintain mood and exert a neuroprotective effect [26].

Inhibition of Protein Aggregation

Most neurodegenerative diseases involve deposition of protein which form amyloid- β plaques in Alzheimer's disease and α -synuclein inclusions in Parkinson's disease. In these processes, alkaloids act by [27]:

- As an example, huperzine A in Alzheimer's disease binds to misfolded proteins and prevents them from aggregating.
- Molecular chaperones aid in correct protein folding, and their activity can be enhanced.
- Activating autophagy, as seen with berberine, to remove clumped proteins and damaged cellular components [28].

Neuroprotection and Anti-Inflammatory Effects

Neuroinflammation works negatively in neurodegenerative illnesses by causing more neuronal damage because of the activation of microglia and astrocytes. Neuroprotection is provided by alkaloids through [29]:

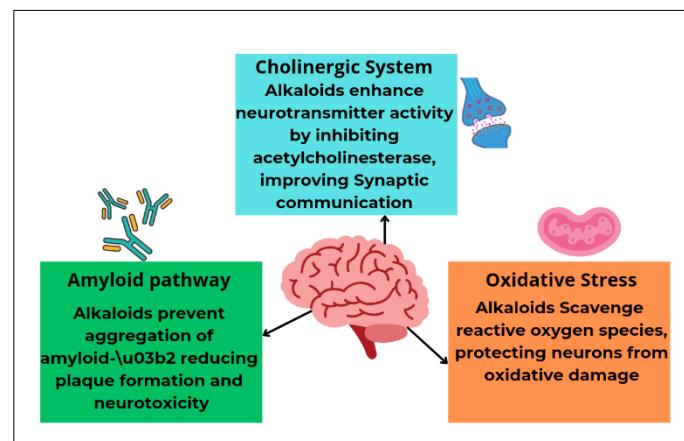


Fig. 1: Pathways influenced by alkaloids (e.g., cholinergic system, amyloid- β pathway, oxidative stress) [31]

Inhibition of Pro-Inflammatory Cytokines: Galantamine and berberine have shown ability to lower levels of cytokines for example IL-6 and TNF- α thus controlling inflammation.

Suppression of Microglial Activation: To avoid damaging tissue responses to inflammation related woes, some alkaloids regulate the activation of microglial cells.

Protection Against Excitotoxicity: Antioxidant activity and the ability to shield neurons from the toxicity of glutamate ions appears to be one of the primary functions of alkaloids [30].

4. Plant-Derived Alkaloids and Specific Neurodegenerative Diseases

The disturbance of many pathogenic processes that can be affected by plant-derived alkaloids such as, neurotransmitter dysregulation, oxidative stress, protein aggregation, and neuroinflammation still leave a lot of therapeutic angles for the prevention and control of neurodegenerative diseases. Here a comprehensive discussion regarding different alkaloids and their involvement in numerous neurodegenerative disorders is provided [32].

4.1. Alzheimer's Disease (AD)

Cognitive impairment particularly memory loss is characteristic of Alzheimer's disease which is the most common type of dementia. Reduced level of Acetylcholine, presence of amyloid- β plaque deposition abstract, formation of tau protein aggregate and oxidative damage are the critical features of pathogenesis [33].

Examples of Alkaloids

Galantamine (Amaryllidaceae): The most common plant used for its extraction is those found in the Narcissus species and the Galanthus nivalis or commonly called the snowdrop and is under galantamine that is approved by the FDA. It enhances cholinergic activity and possesses neuroprotective property through antioxidant activity; it is a selective, reversible AChE.

Huperzine A (Lycopodium species): The Chinese plant Huperzia serrata has other neuroprotective effects of the acetylcholinesterase inhibitor huperzine A due to its ability to reduce the production of free radicals, enhance the process of synaptic remodeling, and regulate the excitotoxic effect of the neurotransmitter glutamate [34].

Mechanisms

Acetylcholinesterase Inhibition: Cognition and memory are two of the most important brain functions that are benefited from elevated levels of acetylcholine resulting from the use of galantamine and huperzine A.

Antioxidant Properties: These alkaloids enhance the level of antioxidant enzymes including superoxide dismutase; and they quench ROS production.

Anti-Amyloid Effects: Huperzine A might be useful in reducing the pathogenesis of Alzheimer disease through reducing the aggregation of amyloid- β [35].

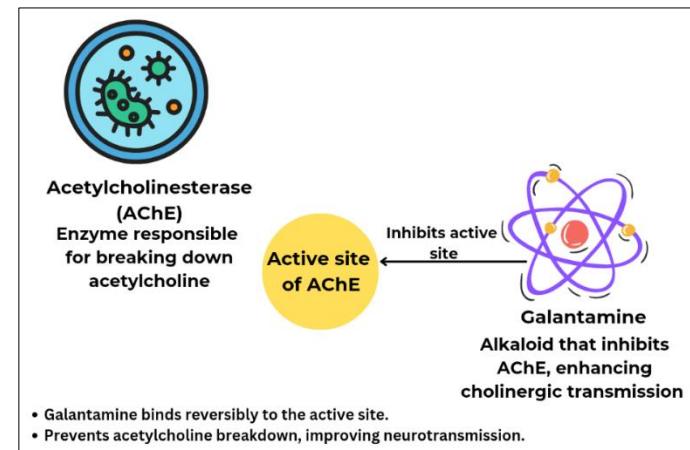


Fig. 2: Molecular interaction of Galantamine with acetylcholinesterase [36]

4.2. Parkinson's Disease (PD)

Damage to the substantia nigra neurons that release dopamine is the cause of the degenerative disease called Parkinson's disease, which affects motor function. Dopamine reduction, and lesion by oxidative stress, and accumulation of α -synuclein protein are considered [37].

Examples of Alkaloids

Berberine (Berberis species): There are numerous paths through which this multipurpose alkaloid, berberine found in Berberis plants operates as a neuroprotectant through reduction of oxidative stress, inflammation, and impaired mitochondrial function. But it also promotes autophagy, which removes clumps of α -synuclein, among other waste products of cellular metabolism.

Reserpine (Rauvolfia species): Reserpine that is an extract derived from Rauvolfia serpentina assists in rebalancing the dopaminergic connection in the early stages of the disease by limiting dopaminergic levels through the use of vesicular monoamine transporters [38].

Mechanisms

Dopaminergic Modulation: Motor dysfunction may be treated by modulating dopamine neurotransmission with the assistance of reserpine and berberine.

Antioxidant and Anti-Inflammatory Effects: Berberine protects nerve cells from death due to the reduction of oxidative stress and inhibitory effect of the formation of inflammatory mediators.

Autophagy Activation: Cleavage of misfolded proteins, which include aggregates of α -synuclein, is accomplished through cellular activities that are enhanced by berberine [39].

4.3. Huntington's Disease (HD)

Chorea, involuntary movements, cognitive impairment, and mental difficulties are symptoms of Huntington's disease, a hereditary neurological condition. Structural neuronal loss and mutant huntingtin protein aggregation constitute the underlying disease [40].

Examples of Alkaloids

Vincamine (Vinca species): Vincamine, a chemical isolated from the lesser periwinkle plant, decreases the risk of ischemia and oxidative stress in neurons by increasing blood flow and oxygenation to the brain.

Corynoxine (Uncaria species): An alkaloid isolated from the plant *Uncaria rhynchophylla* has demonstrated potential in stimulating autophagy, which could eliminate clumps of mutant huntingtin protein [41].

Mechanisms

Anti-Inflammatory Effects: Vincamine lessens neuronal injury by lowering pro-inflammatory mediators.

Anti-Apoptotic Properties: Neuronal integrity is preserved by both vincamine and corynoxine, which suppress apoptotic processes.

Enhanced Clearance of Aggregated Proteins: To break down harmful huntingtin aggregates, corynoxine stimulates autophagy [42].

4.4. Other Neurodegenerative Disorders

Although alkaloids have demonstrated promise in the treatment of Alzheimer's disease, Parkinson's disease, and HD, they may also be useful in the management of other neurodegenerative

diseases, such as ALS and MS, which share characteristics such as neuroinflammation and oxidative damage [43].

Examples of Alkaloids

Caffeine (Coffea species): Caffeine, a stimulant that blocks the action of adenosine receptors, is found in coffee. A lower risk of developing AD and PD has been associated with its ability to reduce neuroinflammation and boost mitochondrial function.

Nicotine (Nicotiana species): Nicotine is a neuroprotective and cognitively beneficial compound derived from tobacco plants. It interacts with nicotinic acetylcholine receptors.

Isorhynchophylline (Uncaria species): It has been suggested that isorhynchophylline, an alkaloid with antioxidant and anti-inflammatory characteristics, may be able to alleviate neuroinflammation and improve cognitive performance.

Emerging Alkaloids: Novel alkaloids including mitragynine (*Mitragyna speciosa*) and harmane (*Peganum harmala*) have the ability to target oxidative stress, mitochondrial malfunction, and protein misfolding in new forms of neurodegeneration, according to research [44].

Mechanisms

Neuroinflammation Modulation: Reduced activation of microglia and pro-inflammatory cytokines are effects of caffeine and isorhynchophylline.

Cognitive Enhancement: Through modulation of nicotinic receptors, nicotine enhances working memory and attention.

Mitochondrial Protection: Caffeine and other alkaloids protect neuronal mitochondria from damage and keep energy metabolism running smoothly [45].

Table 2: List of Specific Alkaloids, Plant Sources, Mechanisms of Action, and Target Diseases [46]

Alkaloid	Plant Source	Mechanism of Action	Target Disease
Galantamine	<i>Galanthus nivalis</i> (Snowdrop)	Acetylcholinesterase inhibition, antioxidant activity	Alzheimer's Disease (AD)
Huperzine A	<i>Huperzia serrata</i>	Acetylcholinesterase inhibition, anti-amyloid activity	Alzheimer's Disease (AD)
Berberine	<i>Berberis</i> species	Antioxidant, anti-inflammatory, autophagy activation	Parkinson's Disease (PD)
Reserpine	<i>Rauwolfia serpentina</i>	Dopaminergic modulation, neuroprotection	Parkinson's Disease (PD)
Vincamine	<i>Vinca minor</i> (Lesser Periwinkle)	Anti-inflammatory, anti-apoptotic properties	Huntington's Disease (HD)
Corynoxine	<i>Uncaria rhynchophylla</i>	Promotes autophagy, reduces protein aggregation	Huntington's Disease (HD)
Caffeine	<i>Coffea arabica</i> (Coffee)	Adenosine receptor antagonism, reduces neuroinflammation	Alzheimer's & Parkinson's
Nicotine	<i>Nicotiana tabacum</i> (Tobacco)	Nicotinic acetylcholine receptor modulation, neuroprotection	Cognitive Decline
Isorhynchophylline	<i>Uncaria</i> species	Anti-inflammatory, antioxidant	Alzheimer's & Parkinson's
Pilocarpine	<i>Pilocarpus</i> species	Cholinergic agonist, neuroprotective effects	Cognitive Impairment
Harmane	<i>Peganum harmala</i> (Rue)	Antioxidant, protein aggregation inhibition	Emerging Neurodegenerative Disorders
Mitragynine	<i>Mitragyna speciosa</i> (Kratom)	Anti-inflammatory, mitochondrial protection	Multiple Sclerosis (MS)

5. Clinical Studies and Therapeutic Potential

Multiple clinical and preclinical investigations have demonstrated the effectiveness of alkaloids derived from plants in treating neurodegenerative disorders. Preclinical research in animals has shown that alkaloids including vincamine, berberine, huperzine A, and galantamine have neuroprotective effects [47]. As an example, in Alzheimer's disease models, galantamine enhanced cognitive capabilities and decreased amyloid- β plaques, whilst berberine demonstrated anti-

inflammatory and antioxidant properties in Parkinson's and Alzheimer's disease models. Vincamine increased blood flow to the brain and decreased neuronal death in models of Huntington's disease, while huperzine A has demonstrated neuroprotective and acetylcholinesterase inhibition as dual advantages [48].

Additional evidence of alkaloids' medicinal potential has been provided via clinical trials. One example is Galantamine, which has been licensed by the FDA for mild to moderate Alzheimer's

disease and has been shown in clinical trials to improve cognitive performance. Huperzine A has shown promise in Phase II and III trials, slowing the course of Alzheimer's disease and improving cognitive function in patients [49]. Researchers have found that caffeine lowers the likelihood of getting Parkinson's and Alzheimer's illnesses in small-scale clinical trials, although this has mostly been observed in epidemiological settings. Although berberine has mostly been studied for its metabolic benefits, it has demonstrated neuroprotective effects in small human studies. However, to validate its effectiveness, larger and more thorough trials are needed [50].

Several obstacles nonetheless stand in the way of turning alkaloid research into accessible treatments, notwithstanding recent advancements. Because alkaloids can be resource-intensive to extract, there are still major challenges to their scalability and sustainable sourcing [51]. Alkaloids are notoriously difficult to synthesize and formulate on a big scale due to their chemical complexity. Their therapeutic application is further complicated by individual variability in response, limited absorption, and quick metabolism. Another difficulty is the need to provide substantial proof of safety and effectiveness in order to get permission from regulatory bodies [52].

Research on alkaloids must prioritize safety and toxicity. Although many alkaloids have therapeutic effects at lower doses, there are notable adverse effects associated with greater concentrations. Nicotine, for instance, poses dangers of addiction and cardiovascular problems, whereas reserpine is linked to depression and hypotension [53]. The therapeutic

effectiveness of alkaloids is also limited by pharmacokinetic problems, such as their poor blood-brain barrier penetration and fast disintegration. Researchers are investigating new nanoformulations, such as prodrug tactics and lipid-based nanoparticles, that may enhance delivery and bioavailability. Another way to increase their therapeutic potential is to use them in combination with complementary treatments [54].

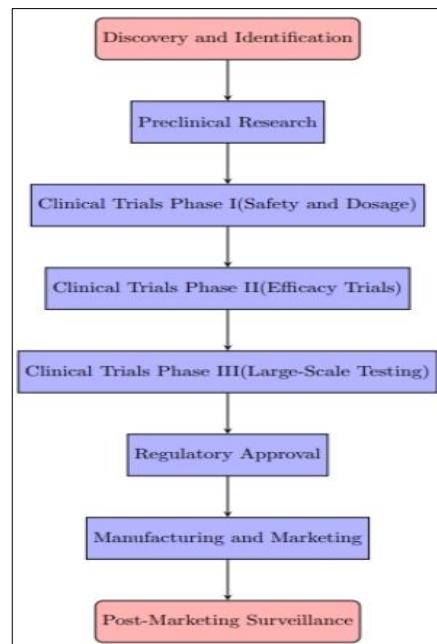


Fig. 3: Flowchart of the drug development pipeline for alkaloids targeting neurodegenerative diseases [55]

Table 3: Overview of Clinical Trials Involving Plant-Derived Alkaloids [56]

Study Name	Alkaloid	Phase	Target Disease	Outcome
GAL-AD-001	Galantamine	Phase III	Alzheimer's Disease (AD)	Improved cognitive function and daily living skills.
HUP-A-Cog	Huperzine A	Phase II	Alzheimer's Disease (AD)	Significant cognitive enhancement and slowed progression.
Berberine-NeuroProtect	Berberine	Preclinical	Parkinson's Disease (PD)	Reduced oxidative stress and improved motor symptoms in animal models.
VIN-HD-Cognition	Vincamine	Phase II	Huntington's Disease (HD)	Enhanced cerebral blood flow; limited cognitive improvement.
Caffeine-PD-Prevention	Caffeine	Observational	Parkinson's Disease (PD)	Epidemiological evidence of reduced disease risk.
Nicotine-CogEnhance	Nicotine	Phase II	Mild Cognitive Impairment	Modest improvement in attention and working memory.
Pilocarpine-MS	Pilocarpine	Phase I	Multiple Sclerosis (MS)	Safe dosage established; early signs of neuroprotection.
Reserpine-MotorStudy	Reserpine	Phase I	Parkinson's Disease (PD)	Effective dopamine modulation; minor side effects noted.
HARMANE-HD-Aggregation	Harmane	Preclinical	Huntington's Disease (HD)	Reduced protein aggregation in cell and animal models.
Mitra-MS-Trial	Mitragynine	Preclinical	Multiple Sclerosis (MS)	Anti-inflammatory effects; improved neuronal survival in models.

6. Future Perspectives

Investigating alkaloids found in plants as a possible treatment for neurological disorders has revealed enormous promise. Still, new studies need to tackle old problems and make use of new technology if their therapeutic potential is to be realized to its fullest. In order to further the use of alkaloids in neurodegenerative medicine, this section lays out important areas to concentrate on [57].

Bioinformatics and computational drug discovery have recently brought about a paradigm shift in the optimization and identification of naturally occurring chemicals. Alkaloids having a strong affinity for neurodegenerative targets can be quickly identified using methods like molecular docking,

virtual screening, and machine learning techniques. The multi-target effects of alkaloids can be predicted using systems biology techniques, which helps to connect their action mechanisms with complex disease networks. Finding new alkaloids and their derivatives will be much faster with the integration of omics technologies (genomics, proteomics, and metabolomics) with high-throughput screening [58].

Problems with absorption, metabolism, and toxicity at larger doses restrict the medicinal use of natural alkaloids, despite their outstanding biological activity. One way to get around these restrictions is to create synthetic versions of these substances. Pharmacokinetic characteristics, blood-brain barrier permeability, and toxicity can all be improved by structural alterations. One example is the enhanced stability and

effectiveness of galantamine's semi-synthetic derivatives. To guarantee a steady supply and scalability, synthetic biology methods also provide the possibility of engineering plants or microbes to create optimal alkaloid analogs [59].

Due to the complex nature of neurodegenerative illnesses, there is great hope for combination therapy that incorporate alkaloids and other pharmaceutical agents. For example, combining huperzine A, an acetylcholinesterase inhibitor, with anti-inflammatory medicines or antioxidants can enhance the efficacy of both treatments. This is because alkaloids target different routes. Furthermore, alkaloids can have their therapeutic effects amplified and their negative effects reduced when administered using nanocarriers or drug delivery systems. By customizing treatments to each patient's unique profile, these methods are in line with the precision medicine paradigm [60].

Sustainably getting alkaloids from plants is becoming more important as demand for them increases. Endangering biodiversity and upsetting ecosystems, medicinal plant overharvesting is a real concern. In order to guarantee the supply of raw materials, conservation activities are crucial, including the cultivation of medicinal plants in controlled conditions and the utilization of tissue culture techniques. As synthetic biology and metabolic engineering continue to advance, new alternatives are emerging, such as the ability for microbes to synthesize alkaloids. Together, researchers and policymakers can safeguard the field's foundational natural resources and spread the word about sustainable methods [61].

CONCLUSION

A new and exciting area of research into the treatment of neurodegenerative illnesses is the use of alkaloids produced from plants. The antioxidant, anti-inflammatory, neuroprotective, and neurotransmitter-modulating effects of these natural substances are only a few of their many therapeutic benefits. Regulatory approval for the treatment of Alzheimer's disease has been achieved for several alkaloids, including galantamine, huperzine A, berberine, and vincamine, all of which have demonstrated promising outcomes in both preclinical and clinical investigations. Neurodegenerative illnesses such as Alzheimer's, Parkinson's, and Huntington's are notoriously complex, and their capacity to target numerous pathogenic processes all at once makes them an ideal treatment option.

The process of turning alkaloid research into treatments that are accessible to the general public nevertheless faces substantial obstacles, notwithstanding recent improvements. They don't have a lot of uses because to problems with bioavailability, toxicity at higher doses, and sustainable source. To overcome these obstacles, additional study is needed to optimize their pharmacokinetics, create synthetic analogs, and incorporate them into combination treatments. Opportunities to overcome these obstacles and provide more accessible and effective medicines are presented by advances in synthetic biology, nanotechnology, and bioinformatics.

Due to their large chemical variety and high biological activity, natural products have traditionally served as a basis for drug discovery. The use of alkaloids produced from plants in the treatment of neurodegenerative illnesses is an example of how nature can be used to address contemporary medical issues. Researchers can find solutions to the symptoms of neurodegeneration and its underlying causes if they keep digging into this area and coming up with new ideas. To sum up, there is great hope for the future of neurodegenerative disease treatment through the integration of plant-derived alkaloids, which could bridge the gap between traditional medicine and modern science.

ACKNOWLEDGEMENT: Nil

CONFLICT OF INTEREST: Nil

REFERENCES:

- Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative disorders of alzheimer, parkinsonism, amyotrophic lateral sclerosis and multiple sclerosis: an early diagnostic approach for precision treatment. *Metabolic Brain Disease*. 2021 Nov 1:1-38.
- Better MA. Alzheimer's disease facts and figures. *Alzheimers Dement*. 2023;19(4):1598-695.
- Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. *Jama*. 2014 Apr 23;311(16):1670-83.
- Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. *Alzheimer's research & therapy*. 2014 Aug;6:1-7.
- Ali AH, Abdelrahman M, El-Sayed MA. Alkaloid role in plant defense response to growth and stress. *Bioactive molecules in plant defense: Signaling in growth and stress*. 2019:145-58.
- An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. *Journal of Materials Chemistry B*. 2020;8(38):8748-67.
- Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. *International journal of biological sciences*. 2018;14(3):341.
- Bilal M, Iqbal HM. Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization. *Coordination Chemistry Reviews*. 2019 Jun 1;388:1-23.
- Wink M. Modes of action of herbal medicines and plant secondary metabolites. *Medicines*. 2015 Sep 8;2(3):251-86.
- Bush LP, Fannin FF, Chelvarajan RL, Burton HR. Biosynthesis and metabolism of nicotine and related alkaloids. *Nicotine and related alkaloids: absorption, distribution, metabolism and excretion*. 1993:1-30.
- Talapatra SK, Talapatra B, Talapatra SK, Talapatra B. Quinine. *Cinchona Alkaloids (Tryptophan Derived Quinoline Alkaloids)*. *Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine*. 2015:855-74.
- Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. *European Journal of Medicinal Chemistry*. 2021 Dec 15;226:113839.

13. Alsaedi NJ, Jawad LK, Mahdi SA. Medicinal importance of Atropa belladonna plant (tropane alkaloids). Kirkuk University Journal For Agricultural Sciences. 2023 Sep 1;14(3):88-97.
14. Almagro L, Fernández-Pérez F, Pedreño MA. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. *Molecules*. 2015;20(2):2973-3000.
15. Ahmed E, Arshad M, Khan MZ, Amjad MS, Sadaf HM, Riaz I, Sabir S, Ahmad N. Secondary metabolites and their multidimensional prospective in plant life. *Journal of Pharmacognosy and Phytochemistry*. 2017;6(2):205-14.
16. Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. *International journal of molecular sciences*. 2022 Feb 28;23(5):2690.
17. Panda D, Manickam S. Cavitation technology—The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. *Applied Sciences*. 2019 Feb 22;9(4):766.
18. Hucho F, Tsetlin VI, Machold J. The emerging three-dimensional structure of a receptor: the nicotinic acetylcholine receptor. *European Journal of Biochemistry*. 1996 Aug;239(3):539-57.
19. Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In *Recent advances in natural products analysis* 2020 Jan 1 (pp. 505-567). Elsevier.
20. Aryal B, Raut BK, Bhattarai S, Bhandari S, Tandan P, Gyawali K, Sharma K, Ranabhat D, Thapa R, Aryal D, Ojha A. Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. *Evidence-Based Complementary and Alternative Medicine*. 2022;2022(1):7299778.
21. Bhamhani S, Kondhare KR, Giri AP. Diversity in chemical structures and biological properties of plant alkaloids. *Molecules*. 2021 Jun 3;26(11):3374.
22. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. *Annals of neurology*. 1995 Sep;38(3):357-66.
23. Uçak İ, Zahid M. Natural antioxidants and therapeutic effects. *Eurasian Journal of Food Science and Technology*. 2020;4(1):24-33.
24. Howes MJ, Houghton PJ. Acetylcholinesterase inhibitors of natural origin. *Int J Biomed Pharm Sci*. 2009;3(SI1):67-86.
25. Gomes NG, Campos MG, Órfão JM, Ribeiro CA. Plants with neurobiological activity as potential targets for drug discovery. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*. 2009 Nov 13;33(8):1372-89.
26. Rebas E, Rzajew J, Radzik T, Zylinska L. Neuroprotective polyphenols: a modulatory action on neurotransmitter pathways. *Current neuropharmacology*. 2020 May 1;18(5):431-45.
27. YY Szeto J, JG Lewis S. Current treatment options for Alzheimer's disease and Parkinson's disease dementia. *Current neuropharmacology*. 2016 May 1;14(4):326-38.
28. Miguel Guaman-Ortiz L, Isabel Ramirez Orellana M, A. Ratovitski E. Natural compounds as modulators of non-apoptotic cell death in cancer cells. *Current Genomics*. 2017 Apr 1;18(2):132-55.
29. González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. *Journal of neuroimmunology*. 2014 Sep 15;274(1-2):1-3.
30. Taveira M, Sousa C, Valentão P, Ferreres F, Teixeira JP, Andrade PB. Neuroprotective effect of steroid alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. *The Journal of Steroid Biochemistry and Molecular Biology*. 2014 Mar 1;140:106-15.
31. Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer's disease. *Molecules*. 2022 Mar 10;27(6):1816.
32. Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. *Critical Reviews in Food Science and Nutrition*. 2023 Nov 29;63(30):10560-84.
33. Kihara T, Shimohama S. Alzheimer's disease and acetylcholine receptors. *Acta neurobiologiae experimentalis*. 2004 Mar 31;64(1):99-105.
34. Dall'Acqua S. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer's disease. *Botanics: Targets and Therapy*. 2013 Jan 11:19-28.
35. Pasandideh S, Arasteh A. Evaluation of antioxidant and inhibitory properties of *Citrus aurantium* L. on the acetylcholinesterase activity and the production of amyloid nano-bio fibrils. *International Journal of Biological Macromolecules*. 2021 Jul 1;182:366-72.
36. Silva LB, Ferreira EF, Maryam, Espejo-Román JM, Costa GV, Cruz JV, Kimani NM, Costa JS, Bittencourt JA, Cruz JN, Campos JM. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. *Molecules*. 2023 Jan 19;28(3):1035.
37. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson's disease. *Journal of neurochemistry*. 2014 Jun;129(6):898-915.
38. Bagde SM, Mujibaile SG, Gangane PS. HPLC Stability Indicating Assay Method for Marketed Herbal Antihypertensive Formulations Containing *Rauvolfia serpentina* Benth. *Indian J. Phys. Nat. Sci.* 2014;4:1448-58.
39. Kartik S, Pal R, Chaudhary MJ, Nath R, Kumar M, Binwal M, Bawankule DU. Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson's disease. *Inflammopharmacology*. 2023 Apr;31(2):927-41.
40. Roos RA. Huntington's disease: a clinical review. *Orphanet journal of rare diseases*. 2010 Dec;5:1-8.
41. Saxton JE. Recent progress in the chemistry of indole alkaloids and mould metabolites. *Natural Product Reports*. 1986;3:353-94.
42. Limanaqi F, Biagiioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the multi-target effects of phytochemicals in neurodegeneration: From oxidative stress to protein aggregation and inflammation. *Antioxidants*. 2020 Oct 20;9(10):1022.
43. Kong YR, Tay KC, Su YX, Wong CK, Tan WN, Khaw KY. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. *Molecules*. 2021 Jan 30;26(3):728.
44. Matsuura HN, Porto DD, Fett-Neto AG. Bioactive alkaloids from south american Psychotria and related rubiaceae. *Natural Products*; Springer: Berlin/Heidelberg, Germany. 2013:119-47.
45. Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG. Nrf2 pathways in neuroprotection: Alleviating mitochondrial

dysfunction and cognitive impairment in aging. *Life Sciences*. 2024 Sep 12:123056.

46. Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. *The Alkaloids: Chemistry and Biology*. 2007 Jan 1;64:1-47.
47. Dey A, Mukherjee A. Plant-derived alkaloids: a promising window for neuroprotective drug discovery. In *Discovery and development of neuroprotective agents from natural products* 2018 Jan 1 (pp. 237-320). Elsevier.
48. Dolanbay SN, Sirin S, Aslim B. Neuroprotection induced by plant alkaloids. In *Natural Molecules in Neuroprotection and Neurotoxicity* 2024 Jan 1 (pp. 1159-1195). Academic Press.
49. Qian ZM, Ke Y. Huperzine A: is it an effective disease-modifying drug for Alzheimer's disease?. *Frontiers in aging neuroscience*. 2014 Aug 19;6:216.
50. Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Fillia L, Zanatta D, Rios Romenets S, Altman R, Chuang R. Caffeine for treatment of Parkinson disease: a randomized controlled trial. *Neurology*. 2012 Aug 14;79(7):651-8.
51. Putra NR, Abdul Aziz AH, Rizkiyah DN, Che Yunus MA, Alwi RS, Qomariyah L. Green extraction of valuable compounds from rubber seed trees: a path to sustainability. *Applied Sciences*. 2023 Dec 8;13(24):13102.
52. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of 'bottom-up'vs 'top-down' recognition of covariates. *Drug metabolism and pharmacokinetics*. 2009;24(1):53-75.
53. Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ. Comprehensive review of cardiovascular toxicity of drugs and related agents. *Medicinal research reviews*. 2018 Jul;38(4):1332-403.
54. Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. *European Journal of Pharmaceutics and Biopharmaceutics*. 2021 Aug 1;165:219-43.
55. Zeng P, Wang XM, Ye CY, Su HF, Tian Q. The main alkaloids in *Uncaria rhynchophylla* and their anti-Alzheimer's disease mechanism determined by a network pharmacology approach. *International Journal of Molecular Sciences*. 2021 Mar 31;22(7):3612.
56. Jantan I, Ahmad W, Bukhari SN. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. *Frontiers in plant science*. 2015 Aug 25;6:655.
57. Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. *Molecules*. 2021 Sep 2;26(17):5327.
58. Islam MT, Aktaruzzaman M, Saif A, Sourov MM, Sikdar B, Rehman S, Tabassum A, Abee-Ul-Haque S, Sakib MH, Muhib MM, Setu MA. Identification of acetylcholinesterase inhibitors from traditional medicinal plants for Alzheimer's disease using in silico and machine learning approaches. *RSC advances*. 2024;14(47):34620-36.
59. Isabel UV, Belén AD, Elena GB. A new frontier in neuropharmacology: recent progress in natural products research for blood-brain barrier crossing. *Current Research in Biotechnology*. 2024 Jul 6:100235.
60. Dzoyem JP, Eloff JN. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. *Journal of Ethnopharmacology*. 2015 Feb 3;160:194-201.
61. Ehrenworth AM, Peralta-Yahya P. Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. *Nature chemical biology*. 2017 Mar;13(3):249-58.

How to Cite this article:

Kumar M, Sharma R, Yadav VK. Role of plant-derived alkaloids in neurodegenerative disease treatment. *International Journal of Pharmaceutical Science and Medicine* 2024; 2(4): 109-117.